Find the value of Y in the given below question: Where,


2019-09-09 | Team PendulumEdu

If \(x-\frac{1}{x}=7\) then the value of \(Y=\frac{(7x^2-7)}{(3x^2+7x-3)}\) is

Options:

A. 2/5

B. 7/4

C. 3

D. 9/2

Solution:

Consider the expression given  in the question and simplify it, we get

\(=\frac{(7x^2-7)}{(3x^2+7x-3)}\)

\(=\frac{7x(x-\frac{1}{x})}{x(3x+7-\frac{3}{x}) }\)

\(=\frac{7x(x-\frac{1}{x})}{x(3(x-\frac{1}{x})+7)} \)

Substituting the given value of \((x-\frac{1}{x})\) in the simplified expression, we get

\(=\frac{(7\times 7)}{(3\times

0
COMMENTS

Comments


Share Blog


x