Find the value of Y in the given below question: Where,
2019-09-09 | Team PendulumEdu
If \(x-\frac{1}{x}=7\) then the value of \(Y=\frac{(7x^2-7)}{(3x^2+7x-3)}\) is
Options:
A. 2/5
B. 7/4
C. 3
D. 9/2
Solution:
Consider the expression given in the question and simplify it, we get
\(=\frac{(7x^2-7)}{(3x^2+7x-3)}\)
\(=\frac{7x(x-\frac{1}{x})}{x(3x+7-\frac{3}{x}) }\)
\(=\frac{7x(x-\frac{1}{x})}{x(3(x-\frac{1}{x})+7)} \)
Substituting the given value of \((x-\frac{1}{x})\) in the simplified expression, we get
\(=\frac{(7\times 7)}{(3\times
Share Blog
Comments