Arrange the following in ascending order

\( \sqrt[5]{(2)^{390}} < \sqrt{(9)^{65}} < \sqrt[3]{(7)^{117}}\)

## Answer

Correct Answer : c ) \( \sqrt[5]{(2)^{390}} < \sqrt{(9)^{65}} < \sqrt[3]{(7)^{117}}\)

Explanation :According to the law of surds

\(\sqrt[m]{\sqrt[n]{\sqrt[o]{(((x)^{p})^{q})^{r}}}}\)can be written as \(x^{(\frac{P*q*r}{m*n*o})}\)

Thus,

\(\sqrt[5]{(2)^{390}}=2^{\frac{390}{5}}=2^{78}..............1\)

Similarly,

\(\sqrt{(9)^{65}}=9^{\frac{65}{2}}=3^{65}..............2\)

Similarly,

\(\sqrt[3]{(7)^{117}}=7^{\frac{117}{3}}=7^{39}..............3\)

Now, equating the powers in equation 1, 2, and 3, we get

\({(2)^{78}} =>{(64)^{13}} \)

\({(3)^{65}} => {(243)^{13}}\)

\({(7)^{39}} => {(343)^{13}}\)

Therefore, the correct order will be

\({(64)^{13}} < {(243)^{13}} < {(343)^{13}}\)

\(\sqrt[5]{(2)^{390}} < \sqrt{(9)^{65}} < \sqrt[3]{(7)^{117}}\)

Hence, (**C**) is the correct answer.

Such type of question is generally asked in exams like SSC CGL, SSC MTS, SSC CPO, SSC CHSL, RRB JE, RRB NTPC, RRB GROUP D, etc. Try and attempt free mock tests at PendulumEdu and learn easy and quick methods to solve such questions. Also, one can clear all exam related doubts through PendulumEdu’s one-to-one session.

## Comments